На современных автомобилях используются различные системы впрыска топлива. Система впрыска (другое наименование – инжекторная система, от injection – впрыск) как следует из названия, обеспечивает впрыск топлива.
Система впрыска используется как на бензиновых, так и дизельных двигателях. Вместе с тем, конструкции и работа систем впрыска бензиновых и дизельных двигателей существенным образом различаются.
В бензиновых двигателях с помощью впрыска образуется однородная топливно-воздушная смесь, которая принудительно воспламеняется от искры. В дизельных двигателях впрыск топлива производится под высоким давлением, порция топлива смешивается со сжатым (горячим) воздухом и почти мгновенно воспламеняется. Давление впрыска определяет величину порции впрыскиваемого топлива и соответственно мощность двигателя. Поэтому, чем больше давление, тем выше мощность двигателя.
Система впрыска топлива является составной частью топливной системы автомобиля. Основным рабочим органом любой системы впрыска является форсунка (инжектор).
В зависимости от способа образования топливно-воздушной смеси различают следующие системы центрального впрыска, распределенного впрыска и непосредственного впрыска. Системы центрального и распределенного впрыска являются системами предварительного впрыска, т.е. впрыск в них производится не доходя до камеры сгорания – во впускном коллекторе.
Центральный впрыск (моновпрыск) осуществляется одной форсункой, устанавливаемой во впускном коллекторе. По сути это карбюратор с форсункой. В настоящее время системы центрального впрыска не производятся, но все еще встречаются на легковых автомобилях. Преимуществами данной системы являются простота и надежность, а недостатками – повышенный расход топлива, низкие экологические показатели.
Система распределенного впрыска (многоточечная система впрыска) предполагает подачу топлива на каждый цилиндр отдельной форсункой. Образование топливно-воздушной смеси происходит во впускном коллекторе. Является самой распространенной системой впрыска бензиновых двигателей. Ее отличает умеренное потребление топлива, низкий уровень вредных выбросов, невысокие требования к качеству топлива.
Перспективной является система непосредственного впрыска. Впрыск топлива осуществляется непосредственно в камеру сгорания каждого цилиндра. Система позволяет создавать оптимальный состав топливно-воздушной смеси на всех режимах работы двигателя, повысить степень сжатия, тем самым обеспечивает полное сгорание смеси, экономию топлива, повышение мощности двигателя, снижение вредных выбросов. С другой стороны ее отличает сложность конструкции, высокие эксплуатационные требования (очень чувствительна к качеству топлива, особенно к содержанию в нем серы).
Для снижения выбросов твердых частиц в атмосферу с отработавшими газами применяется комбинированная система впрыска, объединяющая систему непосредственного впрыска и систему распределенного впрыска на одном двигателе внутреннего сгорания.
Системы впрыска бензиновых двигателей могут иметь механическое или электронное управление. Наиболее совершенным является электронное управление впрыском, обеспечивающее значительную экономию топлива и сокращение вредных выбросов.
Впрыск топлива в системе может осуществляться непрерывно или импульсно (дискретно). Перспективным с точки зрения экономичности является импульсный впрыск топлива, который используют все современные системы.
В двигателе система впрыска обычно объединена с системой зажигания и образует объединенную систему впрыска и зажигания (например, системы Motronic, Fenix). Согласованную работу систем обеспечивает система управления двигателем.
Впрыск топлива в дизельных двигателях может производиться двумя способами: в предварительную камеру или непосредственно в камеру сгорания.
Двигатели с впрыском в предварительную камеру отличает низкий уровень шума и плавность работы. Но в настоящее время предпочтение отдается системам непосредственного впрыска. Несмотря на повышенный уровень шума, такие системы имеют высокую топливную экономичность.
Определяющим конструктивным элементом системы впрыска дизельного двигателя является топливный насос высокого давления (ТНВД).
На легковые автомобили с дизельным двигателем устанавливаются различные конструкции систем впрыска: с рядным ТНВД, с распределительным ТНВД, насос-форсунками, Сommon Rail. Прогрессивные системы впрыска – насос-форсунки и система Сommon Rail.
В системе впрыска насос-форсунками функции создания высокого давления и впрыска топлива объединены в одном устройстве – насос-форсунке. Насос-форсунка имеет постоянный (неотключаемый) привод от распределительного вала двигателя, поэтому подвержена интенсивному износу. Это качество насос-форсунки направляет предпочтения автопроизводителей в сторону системы Сommon Rail.
Работа системы впрыска Common Rail основана на подаче топлива к форсункам от общего аккумулятора высокого давления – топливной рампы (в переводе common rail – общая рампа). Другое название системы – аккумуляторная система впрыска. Для снижения уровня шума, улучшения самовоспламенения и снижения вредных выбросов в системе реализован многократный впрыск топлива – предварительный, основной и дополнительный.
Системы впрыска дизельных двигателей могут иметь механическое или электронное управление. В механических системах регулирование давления, объема и момента подачи топлива производится механическим способом. Электроника образует систему управления дизелем.
Система центрального впрыска (моновпрыск) относится к системам впрыска топлива бензиновых двигателей. Работа системы основана на впрыске топлива одной форсункой, расположенной на впускном коллекторе двигателя.
Известными конструкциями системы центрального впрыска являются системы Mono-Jetronic и Opel-Multec. Система впрыска Mono-Jetronic разработана фирмой Bosch в 1975 году. Система устанавливалась на автомобили марки Volkswagen, Audi .
Конструкция системы Mono-Jetronic включает регулятор давления, центральную форсунку впрыска, дроссельную заслонку с механическим приводом, электросервопривод дроссельной заслонки, а также элементы электронного управления – входные датчики и блок управления.Регулятор давления поддерживает постоянное рабочее давление в системе впрыска (0,1МПа). Кроме этого, с помощью регулятора в системе после выключения двигателя сохраняется остаточное давление, что препятствует образованию воздушных пробок и облегчает пуск двигателя.
Центральная форсунка впрыска обеспечивает импульсный впрыск топлива. Форсунка представляет собой электромагнитный клапан. Управление клапаном осуществляется электрическим сигналом, поступающим от электронного блока управления. Основу форсунки составляет электромагнитная катушка (соленоид). запорный клапан, возвратная пружина и распылительное сопло.
Дроссельная заслонка предназначена для регулирования объема поступающего воздуха. Дроссельная заслонка имеет два привода: механический и электрический. Механический привод осуществляется от педали газа.
Электросервопривод дроссельной заслонки служит для стабилизации оборотов холостого хода за счет принудительного открытия дроссельной заслоники.
Электронный блок управления осуществляет управление центральной форсункой впрыска (электромагнитным клапаном) и электросервоприводом дроссельной заслонкой. Блок управления включает микропроцессор и блок памяти. В блоке памяти помещена информация об эталонной характеристике впрыска (соотношение компонентов топливно-воздушной смести на всех режимах работы двигателя).
Входные датчики фиксируют текущее состояние работы двигателя. В системе используются датчики момента впрыска, положения дроссельной заслонки, температуры воздуха, температуры охлаждающей жидкости, оборотов двигателя, выключатель сервопривода, концентрации кислорода.
По показаниям датчиков температуры воздуха и положения дроссельной заслонки рассчитывается необходимый объем воздуха в системе впрыска. Масса всасываемого воздуха, через плотность, находится в прямой зависимости от температуры. Чем холоднее воздух, тем он более плотный, а значит обладает большей массой. Датчик температуры воздуха расположен перед центральной форсункой впрыска.
Дроссельная заслонка устроена так, что каждому ее положению соответствует определенное количество пропускаемого воздуха. Этот параметр фиксирует датчик положения дроссельной заслоники, представляющий собой потенциометр. Датчик положения дроссельной заслонки (дроссельный потенциометр) установлен непосредственно на оси привода заслонки.
В случае отказа датчиков температуры воздуха и положения дроссельной заслонки их работа дублируется сигналами датчика оборотов и датчика температуры охлаждающей жидкости (температуры двигателя).
Впрыск топлива осуществляется на основании сигналов датчика момента впрыска, которые подаются одновременно с сигналами на воспламенение топливно-воздушной смеси.
Выключатель сервопривода обеспечивает работу системы в режиме холостого хода двигателя. Замкнутое положение выключателя свидетельствует о режиме холостого хода, при этом включается электросервопривод дроссельной заслонки и поворачивает ее на определенный угол.
Датчик концентрации кислорода (кислородный датчик) предназначен для поддержания оптимального соотношения компонентов топливно-воздушной смеси. Датчик устанавливается в выпускной системе:
При работе двигателя сигналы от датчиков поступают в электронный блок управления. По совокупности сигналов и информации об эталонных характеристиках впрыска блок управления вычисляет начало и продолжительность открытия центральной форсунки. В соответствии с расчетными данными подается сигнал на электромагнитную катушку форсунки. Запорный клапан открывается. Бензин через сопло под давлением распыляется во впускном коллекторе и смешивается с воздухом. Образуемая топливно-воздушная смесь подается в камеры сгорания двигателя.
В системе предусмотрена автоматическая стабилизация оборотов. На основании сигнала выключателя сервопривода электродвигатель открывает дроссельную заслонку на определенный угол, чем достигается устойчивая работа в режиме холостого хода.
Конструкция и принцип работы системы впрыска Opel-Multec аналогичны системе Mono-Jetronic.
1.топливный насос
2.фильтр топливный
3.центральная форсунка впрыска
4.датчик температуры охлаждающей жидкости
5.кислородный датчик (лямбда-зонд)
6.электронный блок управления
Система распределенного впрыска (многоточечная система впрыска) относится к системам впрыска топлива бензиновых двигателей. Работа системы основана на впрыске топлива в каждый цилиндр отдельной форсункой.
По принципу действия системы распределенного впрыска топлива разделяются на системы непрерывного и импульсного впрыска. В зависимости от вида управления различают системы распределенного впрыска с механическим и электронным управлением.
Известными конструкциями системы распределенного впрыска топлива являются системы K-Jetronic, KE-Jetronic и L-Jetronic.
Конструктивная схема системы впрыска топлива K-Jetronic:
Система распределенного впрыска K-Jetronic (от немецкого слова «Коп-tinuierlich» – постоянно, непрерывно) фирмы Бош представляет собой механическую систему непрерывного впрыска топлива.
Система впрыска K-Jetronic имеет достаточно сложное устройство и включает дроссельную заслонку, расходомер воздуха, дозатор-распределитель топлива, регулятор давления питания, регулятор управляющего давления, форсунки впрыска, пусковую электромагнитную форсунку, термореле, а также клапан добавочного воздуха.
Топливо под давлением поступает к форсункам, установленным перед впускными клапанами во впускном коллекторе. Форсунка непрерывно распыляет топливо, поступающее под давлением. Давление топлива (расход) зависит от нагрузки двигателя (от разрежения во впускном трубопроводе) и от температуры охлаждающей жидкости.
Количество подводимого воздуха постоянно измеряется расходомером, а количество впрыскиваемого топлива строго пропорционально (1:14,7) количеству поступающего воздуха (за исключением ряда режимов работы двигателя, таких как пуск холодного двигателя, работа под полной нагрузкой и т.д.) и регулируется дозатором-распределителем топлива. Дозатор-распределитель состоит из регулятора количества топлива и расходомера воздуха. Регулирование количества топлива обеспечивается распределителем, управляемым расходомером воздуха и регулятором управляющего давления. В свою очередь воздействие регулятора управляющего давления определяется величиной подводимого к нему разрежения во впускном трубопроводе и температурой жидкости системы охлаждения двигателя.
При повороте ключа в замке зажигания 18 включается топливный насос с электрическим приводом 13, который подает топливо из бака 8, через накопитель топлива 10 и топливный фильтр 9 к дозатору топлива 6. С помощью встроенного в дозатор регулятора давления 7 в дозаторе поддерживается постоянное давление топлива. От дозатора топливо поступает к клапанным форсункам 7. Форсунки непрерывно впрыскивают топливо во впускные каналы двигателя и, при открытии впускных клапанов, топливная смесь поступает в камеры сгорания цилиндров.
Количество топлива, которое подается к форсункам, определяется положением дроссельной заслонки 3. Чем больше открыта дроссельная заслонка, тем больше воздуха проходит через впускной трубопровод и тем больше топлива необходимо подавать к форсункам для нормальной работы двигателя. Для определения количества проходящего через впускной трубопровод воздуха служит расходомер воздуха 12. Расходомер воздуха совместно с дозатором топлива конструктивно составляет единый узел — корректор состава горючей смеси. Расположенный между воздушным фильтром и дроссельной заслонкой напорный диск расходомера воздуха отклоняется под динамическим напором всасываемого во впускной трубопровод воздуха. Отклонение напорного диска передается через систему рычагов на распределительный золотник дозатора топлива. Распределительный золотник, перемещаясь вверх, определяет подачу топлива через дифференциальные клапаны 4 к механическим клапанным форсункам 1 и дальше в цилиндры двигателя, обеспечивая оптимальный состав топливно-воздушной смеси.
Подача топлива во время прогрева двигателя осуществляется с помощью регулятора управляющего давления 5. Для увеличения частоты вращения коленчатого вала на холостом ходу во время прогрева двигателя служит клапан подачи дополнительного воздуха 2, установленный в воздушном канале, выполненном параллельно дроссельной заслонке.
Пусковая форсунка 14 используется для облегчения пуска холодного двигателя, продолжительность открытия которой изменяется в зависимости от температуры двигателя с помощью термореле 17.
При пуске двигателя топливо одновременно подается к пусковой форсунке, регулятору давления топлива 6, распределителю, нижним камерам дифференциальных клапанов и каналу управляющего давления.
В зависимости от величины управляющего давления на верхний торец распределителя действует сила, которая тормозит или облегчает движение распределителя вверх. Таким образом, появляется возможность коррекции подачи топлива к форсункам. Эта возможность реализуется для некоторых режимов работы двигателя с помощью регулятора управляющего давления.
Приготовление горючей смеси — это дозирование топлива в соответствии с количеством поступившего воздуха. Дозирование топлива осуществляется в устройстве регулирования состава смеси, включающем расходомер воздуха и дозатор топлива.
На некоторых режимах работы двигателя потребность в топливе сильно отличается от нормальной — в таких случаях при подготовке смеси необходимы корректировки.
Поступившее в двигатель количество воздуха является мерой его мощности. Оно служит основным изменяемым параметром, определяющим базовое количество впрыскиваемого топлива, а также представляет собой точный параметр для определения расхода топлива.
Поскольку всасываемый воздух перед впуском его в цилиндры должен сначала пройти через расходомер, процесс измерения количества воздуха предшествует фактическому наполнению цилиндра. Это делает возможным производить корректировку смеси в любой момент времени.
Расходомер воздуха, измеряющий количество всего поступающего в двигатель воздуха, установлен перед дроссельной заслонкой и работает по принципу поплавка. Он состоит из диффузора, в котором находится вывешенный поплавок — напорный диск, закрепленный на рычаге. Воздух, протекающий через диффузор, сдвигает напорный диск на определенное расстояние по отношению к ее первоначальному положению.
При пуске холодного двигателя электронасос быстро повышает давление топлива. Если температура двигателя менее 35°С, термореле включает пусковую форсунку с электромагнитным управлением, и она впрыскивает дополнительное количество топлива. Одновременно включается добавочный клапан воздуха. Этим обеспечивается надежный пуск холодного двигателя и устойчивая его работа на холостом ходу. Продолжительность работы пусковой форсунки определяет термореле. При температуре выше 35°С она отключается.
При работе двигателя на частичных нагрузках смесь обогащается или обедняется. Для того чтобы состав рабочей смеси соответствовал режиму работы двигателя в системе впрыска со стороны верхней части плунжера, в распределитель подводится по каналу топливо с управляющим давлением. Если давление большое, сопротивление перемещению плунжера увеличивается — смесь обедняется. В противном случае сопротивление перемещению плунжера уменьшается — смесь обогащается.
При резком открытии дроссельной заслонки обогащение смеси обеспечивается моментальной реакцией напорного диска.
Преимуществом системы распределенного впрыска топлива является более экономичная работа двигателя и легкий запуск его в холодное время года.
Недостатком инжекторного двигателя является необходимость заправки высокосортными бензинами, более сложное техническое обслуживание, сокращение сроков службы. Работа на низкосортных бензинах приводит к преждевременному выходу из строя датчиков. Некоторые элементы системы выходят из строя уже после 80… 120 тыс. км пробега. Срок службы форсунок, как правило, не превышает 60…80 тыс. км пробега.
Основным производителем систем впрыска является фирма Bosch.
Система распределенного впрыска K-Jetronic является механической системой непрерывного впрыска топлива.
Система распределенного впрыска KЕ-Jetronic является механической системой непрерывного впрыска топлива с электронным управлением качественным составом топливно-воздушной смеси.
Конструктивно система KЕ-Jetronic построена на основе системы K-Jetronic. Для реализации электронного управления впрыском в систему дополнительно включены электрогидравлический регулятор давления. мембранный регулятор давления, расходомер воздуха с потенциометрическим датчиком. Электронное управление обеспечивают входные датчики и блок управления.
Cхема системы впрыска «KE-JETRONIC»
1 —топливный бак; 2—топливный насос с электроприводом; 3—аккумулятор давления топлива; 4—топливный фильтр; 5— регу-
лятор давления топлива в системе; 6 — измеритель воздуха; 6 а— напорный диск (ротаметр); 6Б— потенциометр; 7—дозатор
топлива; 7 а—управляющий золотник; 7 б—управляющая (рабочая) кромка золотника; 7 в—верхняя камера; 7 г — нижняя камера; 8 — форсунка подачи топлива; 9 — впускная труба; 10 — пусковая форсунка; 11 — термореле времени; 12—дроссельная заслонка; 13—датчик положения дроссельной заслонки; 14—клапан дополнительной подачи воздуха; 15—датчик температуры двигателя; 16—электронный блок управления; 17—электрогидравлический регулятор давления; 18—датчик содержания кислорода; 19— датчик-распределитель зажигания; 20—реле включения топливного насоса; 21—выключатель зажигания; 22— аккумуляторная батарея.
При запуске холодного двигателя для быстрого прогрева и устойчивой работы система обеспеивает образование обогащенной топливно-воздушной смеси. На основании сигнала датчика температуры охлаждающей жидкости электронный блок управления закрывает клапан электрогидравлического регулятора давления. Подпорное давление в нижних полостях дифференциальных клапанов дозатора-распределителя уменьшается. Верхние полости дифференциальных клапанов увеличиваются и к форсункам впрыска поступает больше топлива. Смесь становиться обогащенной.
При постоянной частоте вращения коленчатого вала двигателя электрогидравлический регулятор давления не работает (биметаллическая пластина с клапаном находится в среднем положении). Связь “расходомер воздуха – плунжер дозатора-распределителя” обеспечивает образование стехиометрической топливно-воздушной смеси.
При резком открытии дроссельной заслонки происходит обогащение топливно-воздушной смеси. Система рассматривает резкое открытие заслонки как потребность в максимальной мощности. Сигналы от датчика положения дроссельной заслонки и потенциометра расходомера воздуха поступают в электронный блок управления, который активизирует электрогидравлический регулятор давления. Клапан регулятора закрывается, подпорное давление уменьшается, подача топлива к форсункам увеличивается, смесь обогащается.
При торможении двигателем, наоборот, образуется обедненная топливно-воздушная смесь. По команде электронного блока управления клапан электрогидравлического регулятора открывается, подпорное давление в нижних камерах дифференциальных клапанов увеличивается, объем верхних камер дифференциальных клапанов уменьшается, соответственно подача топлива к форсункам уменьшается, смесь обедняется.
При температуре ниже 10°С происходит срабатывание пусковой форсунки и клапана добавочного воздуха.
Дальнейшая работа двигателя осуществляется по совокупности сигналов входных датчиков.
1 – топливный бак; 2 – топливный насос с электроприводом; 3 – топливный фильтр; 4 – ECU; 5 – форсунка; 6 – регулятор давления топлива; 7 – впускной трубопровод; 8 – пусковая форсунка; 9 – датчик положения дроссельной заслонки; 10 – измеритель расхода воздуха; 11 – лямбда-зонд; 12 – термовыключатель и реле времени; 13 – датчик температуры охлаждающей жидкости; 14 – распределитель зажигания; 15 – регулятор частоты вращения коленчатого вала на холостом ходу; 16 – аккумулятор; 17 – выключатель зажигания
Система распределенного впрыска L-Jetronic является системой импульсного впрыска с электронным управлением количественным и качественным составом топливно-воздушной смеси. Для обеспечения импульсного впрыска топлива в системе применены форсунки с электромагнитным управлением.
В сравнении с системами K-Jetronic и KE-Jetronic, импульсный впрыск, реализованный в системе L-Jetronic, обеспечивает топливную экономичность, снижение токсичности отработавших газов и улучшение динамических характеристик автомобиля.
Конструкция системы впрыска L-Jetronic включает распределительную магистраль, форсунки впрыска, регулятор давления топлива, расходомер воздуха, пусковую форсунку, клапан добавочного воздуха, а также обязательные элементы электронного управления – входные датчики и блок управления.
Распределительная магистраль предназначена для распределения топлива по форсункам впрыска.
Форсунка впрыска обеспечивает импульсный впрыск топлива за счет электромагнитного управления иглой распылителя.
Регулятор давления топлива служит для поддержания постоянного давления в распределительной магистрали системы, а также для устранения пульсаций топлива, возникающих при работе форсунок впрыска.
Электронный блок управления принимает сигналы от входных датчиков и преобразует их в управляющие воздейтвия на следующие исполнительные устройства, в качестве которых выступают форсунки впрыска, пусковая форсунка и клапан добавочного воздуха.
Основными управляющими параметрами, формируемыми электронным блоком управления, являются необходимый объем впрыскиваемого топлива и время начала впрыска.
Расходомер воздуха обеспечивает количественное регулирование топливно-воздушной смеси. Объем поступающего в систему воздуха отслеживается потенциометрическим датчиком расходомера. В соответствии с объемом воздуха производится впрыск определенного количества топлива.
Для облегчения пуска холодного двигателя и быстрого его прогрева в системе используются пусковая форсунка и клапан добавочного воздуха. Форсунка и клапан управляются электронным блоком.
Пусковая форсунка впрыскивает дополнительную порцию топлива. Работа форсунки обеспечивается термореле и датчиком температуры охлаждающей жидкости. Клапан добавочного воздуха обеспечивает при запуске дополнительную порцию воздуха. Он устанавливается параллельно дроссельной заслонки.
В системе предусмотрена механическая регулировка количества и качества топливно-воздушной смеси на холостом ходу за счет соответствующих винтов. Винт качества устанавливается в обводном канале расходомера воздуха. Он регулирует содержание угарного газа в отработавших газах. Винт количества устанавливается в обводном канале дроссельной заслонки. Он регулирует обороты холостого хода.
Входные датчики фиксируют параметры работы двигателя и преобразуют их в электрические сигналы. В системе L-Jetronic устанавливаются следующие датчики: температуры воздуха, потенциометр расходомера воздуха, положения дроссельной заслонки, высоты над уровнем моря, распределитель зажигания, температуры охлаждающей жидкости, термореле.
Разновидностями системы L-Jetronic являют системы LE-Jetronic, LH-Jetronic, которые имеют отдельные конструктивные отличия.
Топливная система обеспечивает подачу бензина к распределительной магистрали, от которой оно поступает к форсункам впрыска. Входные датчики фиксируют температуру, давление и объем поступающего воздуха, температуру, частоту вращения и нагрузку двигателя. Сигналы от датчиков поступают в электронный блок управления.
Электронный блок управления определяет необходимое количество топлива для работы двигателя и подает импульс определенной продолжительности на электромагнитный клапан форсунки впрыска. Форсунка производит впрыск заданного количества топлива в определенное время. При соединении топлива с воздухом образуется топливно-воздушная смесь, которая при открытии впускных клапанов поступает в камеры сгорания двигателя.
При пуске двигателя, его прогреве, а также во время работы под максимальной нагрузкой система обеспечивает образование обогащенной топливно-воздушной смеси. По сигналу датчика положения дроссельной заслонки система распознает указанные режимы и обеспечивает впрыск большего объема топлива. Смесь при этом обогащается.
При температуре ниже 10°С для создания обогащенной топливно-воздушной смеси используется пусковая форсунка и клапан добавочного воздуха.
Система непосредственного впрыска топлива является самой современной системой впрыска топлива бензиновых двигателей. Работа системы основана на впрыске топлива непосредственно в камеру сгорания двигателя.
Впервые система непосредственного впрыска была применена на двигателе GDI (Gasoline Direct Injection – непосредственный впрыск бензина), устанавливаемом на автомобили компании Mitsubishi. В настоящее время система непосредственного впрыска используется в двигателях многих автопроизводителей. Передовики Audi (двигатели TFSI) и Volkswagen (двигатели FSI, TSI), которые практически полностью перешли на бензиновые двигатели с непосредственным впрыском.
Двигатели с непосредственным впрыском имеют в своем активе BMW (двигатели N54, N63), Infiniti (двигатели M56), Ford (двигатели EcoBoost), General Motors (двигатели Ecotec), Hyundai (двигатели Theta), Mazda (двигатели Skyactiv), Mercedes-Benz (двигатели CGI).
Применение системы непосредственного впрыска позволяет достичь до 15% экономии топлива, а также сокращения выброса вредных веществ с отработавшими газами.
Конструкция системы непосредственного впрыска топлива рассмотрена на примере системы, устанавливаемой на двигатели FSI (Fuel Stratified Injection – послойный впрыск топлива). Система непосредственного впрыска составляет контур высокого давления топливной системы двигателя и включает топливный насос высокого давления, регулятор давления топлива, топливную рампу, предохранительный клапан, датчик высокого давления и форсунки впрыска.
Топливный насос высокого давления служит для подачи топлива к топливной рампе и далее к форсункам впрыска под высоким давлениям (3-11 МПА) в соответствии с потребностями двигателя. Основу конструкции насоса составляет один или несколько плунжеров. Насос приводится в действие от распределительного вала впускных клапанов.
Регулятор давления топлива обеспечивает дозированную подачу топлива насосом в соответствии с впрыском форсунки. Регулятор расположен в топливном насосе высокого давления.
Топливная рампа служит для распределения топлива по форсункам впрыска и предотвращения пульсации топлива в контуре.
Предохранительный клапан защищает элементы системы впрыска от предельных давлений, возникающих при температурном расширении топлива. Клапан устанавливается на топливной рампе.
Датчик высокого давления предназначен для измерения давления в топливной рампе. В соответствии с сигналами датчика блок управления двигателем может изменять давление в топливной рампе. Форсунка впрыска обеспечивает распыление топлива в камере сгорания для образования топливно-воздушной смеси.
Согласованную работу системы обеспечивает электронная система управления двигателем, которая является дальнейшим развитием объединенной системы впрыска и зажигания. Традиционно система управления двигателем объединяет входные датчики, блок управления и исполнительные механизмы.
Помимо датчика высокого давления топлива в интересах системы непосредственного впрыска работают датчик частоты вращения коленчатого вала, датчик положения распределительного вала, датчик положения педали акселератора, расходомер воздуха, датчик температуры охлаждающей жидкости, датчик температуры воздуха на впуске.
В совокупности датчики обеспечивают необходимой информацией блок управления двигателем, на основании которой блок воздействует на исполнительные механизмы — электромагнитные клапаны форсунок, предохранительный и перепускной клапаны.
Принцип действия системы непосредственного впрыска
Система непосредственного впрыска в результате работы обеспечивает несколько видов смесеобразования:
— послойное ;
— стехиометрическое гомогенное ;
— гомогенное.
Многообразие в смесеобразовании определяет высокую эффективность использования топлива (экономия, качество образования смеси, ее полное сгорание, увеличение мощности, уменьшение вредных выбросов) на всех режимах работы двигателя.
Послойное смесеобразование используется при работе двигателя на малых и средних оборотах и нагрузках. Стехиометрическое (другое наименование – легковоспламеняемое) гомогенное (другое наименование – однородное) смесеобразование применяется при высоких оборотах двигателя и больших нагрузках. На бедной гомогенной смеси двигатель работает в промежуточных режимах.
При послойном смесеобразовании дроссельная заслонка почти полностью открыта, впускные заслонки закрыты. Воздух поступает в камеры сгорания с большой скоростью, с образованием воздушного вихря. Впрыск топлива производится в зону свечи зажигания в конце такта сжатия. За непродолжительное время до воспламенения в районе свечи зажигания образуется топливно-воздушная смесь с коэффициентом избытка воздуха от 1,5 до 3. При воспламенении смеси вокруг нее остается достаточно много чистого воздуха, выступающего в роли теплоизолятора.
Гомогенное стехиометрическое смесеобразование происходит при открытых впускных заслонках, дроссельная заслонка при этом открывается в соответствии с положением педали газа. Впрыск топлива производится на такте впуска, что способствует образованию однородной смеси. Коэффициент избытка воздуха составляет 1. Смесь воспламеняется и эффективно сгорает во всем объеме камеры сгорания.
Бедная гомогенная смесь образуется при максимально открытой дроссельной заслонке и закрытыми впускными заслонками. При этом создается интенсивное движение воздуха в цилиндрах. Впрыск топлива производится на такте впуска. Коэффициент избытка воздуха поддерживается системой управления двигателем на уровне 1,5. При необходимости в состав смеси добавляются отработавшие газы из выпускной системы, содержание которых может доходить до 25%.
Бензиновый двигатель с непосредственным впрыском топлива имеет большие преимущества такие как экономия, качество образования смеси, ее полное сгорание, увеличение мощности, уменьшение вредных выбросов, но в то же время на некоторых режимах работы образует большое количество твердых частиц сажи, которая в свою очередь попадает в атмосферу. Их содержание может превышать выбросы такого же по объему дизеля.
Для уменьшения выбросов в атмосферу и исполнения экологических норм ЕВРО-6 концерн VAG (Volkswagen Audi Gruppe) и чуть позже Toyota разработали комбинированную систему впрыска топлива объединяющую систему непосредственного впрыска и систему распределенного впрыска на одном двигателе. При изменении режимов работы двигателя внутреннего сгорания электронный блок управления переключает работу между системами впрыска. В результате инженерам удалось на двигателях с комбинированным впрыском увеличить мощность, крутящий момент, сократить расход топлива, уменьшить выбросы CO2 в окружающую среду и соответствовать экологическим нормам.
Сейчас комбинированная или непосредственно-распределенная система впрыска устанавливается на двигателях VAG TFSI объемом 1,8 и 2,0 литра и Toyota 6AR-FSE 2,0 литра. Система питания с комбинированным впрыском включает в себя элементы обоих систем: форсунки, топливную рампу высокого давления, форсунки, топливную рампу низкого давления, а также насос высокого давления обеспечивающий питание обеих систем.
Элементы обеих топливных систем установлены так же как на двигателях присущих им. Работа непосредственно-распределенной системы впрыска осуществляется в зависимости от нагрузки на двигатель внутреннего сгорания. При пуске, прогреве, а так же при максимальной нагрузке активна система непосредственного (прямого) впрыска топлива. И при разных режимах идет разное количество инжекции топлива например: при запуске – три впрыска на такте сжатия; на холодном двигателе – один впрыск на такте впуска; при прогреве двигателя и движении с максимальной нагрузкой – два впрыска, один на такте впуска, другой на такте сжатия. Форсунки непосредственного впрыска периодически подключаются для предотвращения их засорения. Система распределенного впрыска подключается только при частичной нагрузке и на средних мощностных характеристиках работы двигателя. В основном этот режим работы присущ размеренной городской езде с частыми остановками и стартами автомобиля.Оптимизация режимов впрыска топлива в соответствии с режимами работы двигателя позволяет достичь минимального выброса сажевых частиц в атмосферу с отработавшими газами. Необходимо отметить, что при выходе из строя одной из систем впрыска двигатель продолжает работать в аварийном режиме, а автомобиль имеет возможность двигаться.
Система впрыска Common Rail является самой современной системой впрыска топлива дизельных двигателей. Работа системы Common Rail основана на подаче топлива к форсункам от общего аккумулятора высокого давления – топливной рампы, наподобие бензиновых ДВС (Common Rail в переводе означает общая рампа). Система впрыска разработана специалистами фирмы Bosch.
Наибольшее распространения получили четыре типа систем COMMON RAIL, названным по имени их производителя. BOSCH, DELPHI, DENSO и SIEMENS. Каждый автопроизводитель имеет собственную аббревиатуру, которая обозначает как систему, так и ее отдельные элементы :
BMW : D-двигатели (также используются Land Rover как TD4)
Cummins и Scania : XPI
Cummins : CCR
Daimler : CDI (для автомобилей Chrysler и Jeep — CRD)
Fiat : Fiat, Alfa Romeo и Lancia — JTD (MultiJet, JTDm, Ecotec CDTi, TiD, TTiD, DDiS, Quadra-Jet)
Ford Motor : TDCi Duratorq и Powerstroke
General Motors : Opel/Vauxhall — CDTi и DTi для Isuzu
General Motors : Daewoo/Chevrolet — VCDi (VM Motori — Ecotec CDTi)
Honda : i-CTDi
Hyundai и Kia : CRDi
Mahindra : CRDe
Maruti Suzuki : DDiS
Mazda : CiTD
Mitsubishi : DI-D
Nissan : dCi
PSA Peugeot Citroen : HDI, HDi (Volvo S40/V50 использует двигатели PSA 1,6D & 2,0D, JTD)
Renault : dCi
SsangYong : XDi
Subaru : TD
Tata : DICOR
Toyota : D-4D
Volkswagen Audi Group (Skoda) : TDI. CR в 2005 году пришла на смену насос-форсункам.
Volvo : D3, D4 и D5
Применение данной системы позволяет достигнуть снижения расхода топлива, токсичности отработавших газов, уровня шума дизеля. Главным преимуществом системы Common Rail является широкий диапазон регулирования давления топлива и момента начала впрыска, которые достигнуты за счет разделения процессов создания давления и впрыска.
Конструктивно система впрыска Common Rail составляет контур высокого давления топливной системы дизельного двигателя. В системе используется непосредственный впрыск топлива, т.е. дизельное топливо впрыскивается непосредственно в камеру сгорания. Система Common Rail включает топливный насос высокого давления, клапан дозирования топлива, регулятор давления топлива (контрольный клапан), топливную рампу и форсунки. Все элементы объединяют топливопроводы.
1. топливный бак
2. топливный фильтр
3. топливный насос высокого давления
4. топливопроводы
5. датчик давления топлива
6. топливная рампа
7. регулятор давления топлива
8. форсунки
9. электронный блок управления
10. сигналы от датчиков
11. усилительный блок (на некоторых авто)
Топливный насос высокого давления (ТНВД) служит для создания высокого давления топлива и его накопления в топливной рампе. Современные топливные насосы высокого давления — плунжерного типа. Клапан дозирования топлива регулирует количество топлива, подаваемого к топливному насосу высокого давления в зависимости от потребности двигателя. Клапан конструктивно объединен с ТНВД.
Регулятор давления топлива предназначен для управления давлением топлива в системе, в зависимости от нагрузки на двигатель. Он устанавливается в топливной рампе. Топливная рампа предназначена для выполнения нескольких функций: накопления топлива и содержание его под высоким давлением, смягчения колебаний давления, возникающих вследствие пульсации подачи от ТНВД, распределения топлива по форсункам. Форсунка важнейший элемент системы, непосредственно осуществляющий впрыск топлива в камеру сгорания двигателя. Форсунки связаны с топливной рампой топливопроводами высокого давления. В системе используются электрогидравлические форсунки или пьезофорсунки. Впрыск топлива электрогидравлической форсункой осуществляется за счет управления электромагнитным клапаном. Активным элементом пьезофорсунки являются пьезокристаллы, значительно повышающие скорость работы форсунки.
Управление работой системой впрыска Common Rail обеспечивает система управления дизелем, которая объединяет датчики, блок управления двигателем и исполнительные механизмы систем двигателя. Система управления дизелем включает датчики оборотов двигателя, Холла, положения педали акселератора, расходомер воздуха, температуры охлаждающей жидкости, давления воздуха, температуры воздуха, давления топлива, кислородный датчик (лямбда-зонд) и другие. Основными исполнительными механизмами системы впрыска Common Rail являются форсунки, клапан дозирования топлива, а также регулятор давления топлива.
Принцип действия системы впрыска Common Rail
На основании сигналов, поступающих от датчиков, блок управления двигателем определяет необходимое количество топлива, которое топливный насос высокого давления подает через клапан дозирования топлива. Насос накачивает топливо в топливную рампу. Там оно находится под определенным давлением, обеспечиваемым регулятором давления топлива. В нужный момент блок управления двигателем дает команду соответствующим форсункам на начало впрыска и обеспечивает определенную продолжительность открытия клапана форсунки. В зависимости от режимов работы двигателя блок управления двигателем корректирует параметры работы системы впрыска.
С целью повышения эффективной работы двигателя в системе Common Rail реализуется многократный впрыск топлива в течение одного цикла работы двигателя. При этом различают: предварительный впрыск, основной впрыск и дополнительный впрыск.
Предварительный впрыск небольшого количества топлива производится перед основным впрыском для повышения температуры и давления в камере сгорания, чем достигается ускорение самовоспламенения основного заряда, снижение шума и токсичности отработавших газов. В зависимости от режима работы двигателя производится:
2 предварительных впрыска — на холостом ходу;
1 предварительный впрыск — при повышении нагрузки;
0(предварительный впрыск не производится) — при полной нагрузке.
Основной впрыск обеспечивает стабильную работу двигателя.
Дополнительный впрыск производится для повышения температуры отработавших газов и улучшения сгорания частиц сажи в сажевом фильтре (регенерация сажевого фильтра).
Развитие системы впрыска Common Rail осуществляется по пути увеличения давления впрыска:
1 поколение – 140 МПа, с 1999 года;
2 поколение – 160 МПа, с 2001 года;
3 поколение – 180 МПа, с 2005 года;
4 поколение – 220 МПа, с 2009 года.
Чем выше давление в системе впрыска, тем больше топлива можно впрыснуть в цилиндр за равный промежуток времени и, соответственно, реализовать большую мощность.
ТНВД является одним из основных ко элементов в конструкции системы впрыска двигателя. Он выполняет, как правило, две важнейшие функции: 1- нагнетание определенного количества топливной жидкости; 2- регулирование по времени начала впрыскивания. С момента появления аккумуляторных систем впрыска работа по регулированию времени начала впрыска была возложена на управляемые электроникой форсунки.
Основу ТНВД составляет плунжерная пара. Данный механизм составляет поршень (другое название- плунжер) и цилиндр (другое название — втулка) совсем небольшого размера. Плунжерную пару изготавливают из стали высокого качества и делают это с высочайшей точностью. Так, что между плунжером и втулкой имеется минимальный зазор (сопряжение прецизионное). В системе Common Rail используется Магистральный ТНВД.